Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 924 Print this page  Email this page Small font size Default font size Increase font size
Year : 2020  |  Volume : 35  |  Issue : 4  |  Page : 321-325

Assessment of radiation exposure and radioactivity from the liquid discharge in a nuclear medicine facility

1 Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
2 Radiological Safety Division and Central Public Information Officer, Atomic Energy Regulatory Board, Government of India, Mumbai, Maharashtra, India

Correspondence Address:
Dr. Sanjay Gambhir
Department of Nuclear Medicine, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijnm.IJNM_113_20

Rights and Permissions

Aim: Radionuclide imaging and therapies produce radioactive liquid waste that may lead to significant radiation exposure to the general public. The study aims to assess the radiation exposure rate to public sewerage from a modified delay tank facility. We shall also evaluate the exposure rates and overall radioactivity at several points. Materials and Methods: After having appropriate permission from the AERB, we measured the radiation exposure from the radionuclide therapy ward. Ward has three isolation beds and a single delay and decay tank of a capacity of 7500 liters. Effluents from the delay tank are processed at the filtration plant of the institute and subsequently released in the public sewerage. We obtained samples from several sites to determine discharged radioactivity. Results: A total of 38 patients received 129.4 ± 42 mCi (Range 40- 200) radioiodine therapy during the study. Discharge of the tanks was done two times during the study. The radioactivity discharges into aeration plant were 89.2 and 71.2 mCi that correspond to 440.05 and 351 MBq/m3, respectively. This was diluted by the aeration tank (6 million liters). Finally, at the discharge time, the radioactivity in the discharge was 1.6 and 1.5 MBq/m3, respectively. The highest exposure rates were 14 μSv/h near the delay tank, which rapidly decreased on moving to the surrounding. Conclusion: Our study indicates that the addition of the dilution method and close monitoring may significantly reduce the radiation exposure and overall radioactivity release from the facility. Old facilities that do not have space to add up the tank capacity may get a benefit from it. A small change in the practice, such as admitting patients alternate months or providing extra decay time for radioactive waste, may lead to a cost-effective alternative.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded182    
    Comments [Add]    

Recommend this journal