Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 522 Print this page  Email this page Small font size Default font size Increase font size
ORIGINAL ARTICLE
Year : 2022  |  Volume : 37  |  Issue : 2  |  Page : 154-161

Optimum value of scale and threshold for compression of 99mTc-MDP bone scan images using Haar wavelet transform


1 Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
2 Department of Mathematics, University of Delhi, New Delhi, India
3 Department of Computer Science, SGTB Khalsa College, University of Delhi, New Delhi, India

Correspondence Address:
Dr. Anil Kumar Pandey
Department Nuclear Medicine, All India Institute of Medical Sciences, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnm.ijnm_170_21

Rights and Permissions

Introduction: Wavelet transforms of an image result in set of wavelet coefficients. Thresholding eliminates insignificant coefficients while retaining the significant ones (resulting in matrix having few nonzero elements that need to be stored). The compressed image is reconstructed by applying inverse wavelet transform. The quality of compressed image deteriorates with increase in compression. Hence, finding optimum value of scale and threshold is a challenging task. The objective of the study was to find the optimum value of scale and threshold for compressing 99mTc-methylene diphosphonate (99 mTc-MDP) bone scan images using Haar wavelet transform. Materials and Methods: Haar wavelet transform at scale 1–8 was applied on 106 99 mTc-MDP whole-body bone scan images, and wavelet coefficients were threshold at 90, 95, 97, and 99 percentiles, followed by inverse wavelet transform to get 3392 compressed images. Nuclear medicine physician (NMP) compared compressed image with its corresponding input to label it as acceptable or unacceptable. The values of scale and threshold that resulted in majority of acceptable images were considered to be optimum. The quality of compressed image was also evaluated using perception image quality evaluator (PIQE) image quality metrics. Compression ratio was calculated by dividing the number of nonzero elements after thresholding wavelet coefficients by the number of nonzero elements in Haar decomposed matrix. Results: NMP found quality of compressed images (obtained at scale 2 and 90 percentile threshold) identical to the quality of the corresponding input images. As per PIQE score, quality of compressed images was perceptually better than that of the corresponding input images. Conclusions: The optimum values of scale and threshold were determined to be 2 and 90 percentiles, respectively.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed184    
    Printed0    
    Emailed0    
    PDF Downloaded28    
    Comments [Add]    

Recommend this journal