Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 1090 Print this page  Email this page Small font size Default font size Increase font size
Year : 2022  |  Volume : 37  |  Issue : 3  |  Page : 209-216

Contrast enhancement of scintigraphic image using fuzzy intensification

1 Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
2 Department of Computer Science, SGTB Khalsa College, University of Delhi, New Delhi, India

Correspondence Address:
Dr. Anil Kumar Pandey
Department of Nuclear Medicine, All India Institute of Medical Sciences, Ansari Nagar, New Delhi - 110 029
Login to access the Email id

Source of Support: None, Conflict of Interest: None

DOI: 10.4103/ijnm.ijnm_210_21

Rights and Permissions

Introduction: The objective of this study was to see the effect of fuzzy intensification (INT) operator on enhancement of scintigraphic image. Materials and Methods: Nuclear medicine physician (NMP) provided 25 scintigraphic images that required enhancement. The image pixels value was converted into fuzzy plane and was subjected to contrast INT operator with parameters of INT operator i.e., cross-over = 0.5 and number of iterations = 1 and 2. The enhanced image was again brought back into spatial domain (de-fuzzification) whose intensity value was in the range 0–255. NMP compared the enhanced image with its input image and labeled it as acceptable or unacceptable. The quality of enhanced image was also accessed objectively using four different image metrics namely: Entropy, edge content, absolute mean brightness error and saturation metrics. Results: Most of the enhanced images (18 out of 25 images) obtained at cross-over = 0.5 and number of iterations = 1 are acceptable and found to have overall better contrast compared to the corresponding input image. Four images (two brain positron emission tomography scan and two I-131 scan) obtained at cross-over = 0.5 and with iteration = 2 are acceptable. Three input images (one dimercaptosuccinic acid (DMSA), one I-131 and one I-131- metaiodo-benzyl-guanidine (MIBG) scan) were better than their enhanced images. Conclusions: The enhancement produced by fuzzy INT operator was encouraging. Majority of enhanced images were acceptable at cross-over = 0.5 and number iterations = 1.

Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)

 Article Access Statistics
    PDF Downloaded40    
    Comments [Add]    

Recommend this journal