Indian Journal of Nuclear Medicine
Home | About IJNM | Search | Current Issue | Past Issues | Instructions | Ahead of Print | Online submissionLogin 
Indian Journal of Nuclear Medicine
  Editorial Board | Subscribe | Advertise | Contact
Users Online: 56 Print this page  Email this page Small font size Default font size Increase font size
ORIGINAL ARTICLE
Year : 2023  |  Volume : 38  |  Issue : 1  |  Page : 8-15

99m-Tc MDP bone scan image enhancement using pipeline application of dynamic stochastic resonance algorithm and block-matching 3D filter


1 Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
2 Department of Computer Science, SGTB Khalsa College, University of Delhi, New Delhi, India

Correspondence Address:
Dr. Anil Kumar Pandey
Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi - 110 029
India
Login to access the Email id

Source of Support: None, Conflict of Interest: None


DOI: 10.4103/ijnm.ijnm_78_22

Rights and Permissions

Introduction: In this pilot study, we have proposed and evaluated pipelined application of the dynamic stochastic resonance (DSR) algorithm and block-matching 3D (BM3D) filter for the enhancement of nuclear medicine images. The enhanced images out of the pipeline were compared with the corresponding enhanced images obtained using individual applications of DSR and BM3D algorithm. Materials and Methods: Twenty 99m-Tc MDP bone scan images acquired on SymbiaT6 SPECT/CT gamma camera system fitted with low-energy high-resolution collimators were exported in DICOM format to a personal computer and converted into PNG format. These PNG images were processed using the proposed algorithm in MATLAB. Two nuclear medicine physicians visually compared each input and its corresponding three enhanced images to select the best-enhanced image. The image quality metrics (Brightness, Global Contrast Factor (GCF), Contrast per pixel (CPP), and Blur) were used to assess the image quality objectively. The Wilcoxon signed test was applied to find a statistically significant difference in Brightness, GCF, CPP, and Blur of enhanced and its input images at a level of significance. Results: Images enhanced using the pipelined application of SR and BM3D were selected as the best images by both nuclear medicine physicians. Based on Brightness, Global Contrast Factor (GCF), CPP, and Blur, the image quality of our proposed pipeline was significantly better than enhanced images obtained using individual applications of DSR and BM3D algorithm. The proposed method was found to be very successful in enhancing details in the low count region of input images. The enhanced images were bright, smooth, and had better target-to-background ratio compared to input images. Conclusion: The pipelined application of DSR and BM3D algorithm produced enhancement in nuclear medicine images having following characteristics: bright, smooth, better target-to-background ratio, and improved visibility of details in the low count regions of the input image, as compared to individual enhancements by application of DSR or BM3D algorithm.


[FULL TEXT] [PDF]*
Print this article     Email this article
 Next article
 Previous article
 Table of Contents

 Similar in PUBMED
   Search Pubmed for
   Search in Google Scholar for
 Related articles
 Citation Manager
 Access Statistics
 Reader Comments
 Email Alert *
 Add to My List *
 * Requires registration (Free)
 

 Article Access Statistics
    Viewed198    
    Printed16    
    Emailed0    
    PDF Downloaded30    
    Comments [Add]    

Recommend this journal