Close
  Indian J Med Microbiol
 

Figure 4: Two sets of three tomographic slices of positron emission tomography and single-photon emission computed tomography. On the left half, we see transaxial, sagittal, and coronal slices of brain 18F-fluorodeoxyglucose-positron emission tomography (a-c, respectively). On the right half, correlative transaxial, sagittal, and coronal slices of cerebral perfusion single-photon emission computed tomography (d-f, respectively) are displayed. We note the difference between the cerebellum and cerebral cortex in the two different techniques with a marked relative hyperperfusion and only slightly relative hypermetabolism in the cerebellum when compared with other brain areas

Figure 4: Two sets of three tomographic slices of positron emission tomography and single-photon emission computed tomography. On the left half, we see transaxial, sagittal, and coronal slices of brain <sup>18</sup>F-fluorodeoxyglucose-positron emission tomography (a-c, respectively). On the right half, correlative transaxial, sagittal, and coronal slices of cerebral perfusion single-photon emission computed tomography (d-f, respectively) are displayed. We note the difference between the cerebellum and cerebral cortex in the two different techniques with a marked relative hyperperfusion and only slightly relative hypermetabolism in the cerebellum when compared with other brain areas